22 4월 55.dos.4 Where & Whenever Performed My Swiping Habits Changes?
More details to own mathematics somebody: Become alot more specific, we shall make ratio away from fits so you're able to swipes best, parse any zeros throughout the numerator or the denominator to just one (essential producing real-appreciated diaryarithms), then grab the sheer logarithm of the worth. This figure itself will never be such as for instance interpretable, nevertheless comparative overall trends would-be.
bentinder = bentinder %>% mutate(swipe_right_price = (likes / (likes+passes))) %>% mutate(match_rate = log( ifelse(matches==0,1,matches) / ifelse(likes==0,1,likes))) rates = bentinder %>% select(day,swipe_right_rate,match_rate) match_rate_plot = ggplot(rates) + geom_section(size=0.dos,alpha=0.5,aes(date,match_rate)) + geom_effortless(aes(date,match_rate),color=tinder_pink,size=2,se=Not the case) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=-0.5,label='Pittsburgh',color='blue',hjust=1) + annotate('text',x=ymd('2018-02-26'),y=-0.5,label='Philadelphia',color='blue',hjust=0.5) + annotate('text',x=ymd('2019-08-01'),y=-0.5,label='NYC',color='blue',hjust=-.4) + tinder_motif() + coord_cartesian(ylim = c(-2,-.4)) + ggtitle('Match Speed More than Time') + ylab('') swipe_rate_plot = ggplot(rates) + geom_part(aes(date,swipe_right_rate),size=0.dos,alpha=0.5) + geom_effortless(aes(date,swipe_right_rate),color=tinder_pink,size=2,se=Untrue) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=.